Intro from Meghan: This is a guest post from Alicia Farmer and Stephanie Shaulskiy from the University of Michigan’s Biological Station.
This is Stephanie and Alicia. We work as staff* for the University of Michigan Biological Station (UMBS), a teaching and research field station located near Pellston, Michigan in the state’s northern lower peninsula.
When coronavirus forced our home institution’s instruction online in March, UMBS was less than two months away from welcoming several hundred researchers, instructors, students and staff to our Northern Michigan site for our usual field season. In a normal year, we offer 20 – 25 field courses, divided among a 4-week spring session, an 8-week summer session, and a 2-week late summer session. Once the university approved us to offer classes on-line, we gave our instructors the option of adapting their northern-Michigan, place-based classes to a fully remote and virtual environment, or canceling their class for this year. To our surprise and gratitude, fifteen instructors signed on.
Because we had already been assessing outcomes and impacts of the UMBS field experience, we were set to pivot to an assessment of this year’s online instruction. What follows is a distillation of actions and lessons learned from our focus groups and individual interviews with faculty and students participating in our 2020 remote field courses.**
9 SUCCESSFUL SYLLABUS/COURSE DESIGN ACTIONS for REMOTE INSTRUCTION
as piloted by UMBS Spring/Summer 2020 Faculty
C = Builds Community
E = Heightens student Engagement with the content
F = Especially important to courses with a Field component
P = Builds sense of Place
S = Important consideration for course Structure or Syllabus
1. Incorporate Physical Materials (C, E, F, P, S)
Students in one course wrote letters to each other. One faculty member sent the students items for an assignment; package “unboxing” happened in a Zoom session. Several lab classes (including Chemistry, Ecology, and Fishes) had UMBS staff assemble and mail lab kits to students.*** These enabled students to sample and study their local environments, including their residences.
[Image caption: Materials sent to students in Biology of Fishes class. Image description: Items spread out on a table surface include a bucket, a minnow trap, a bundle of flags, flagging tape, a tape measure, rope, latex gloves, bait, plastic bags.]
2. Take advantage of and take into account students’ diverse locations (E, F, P, S)
For some classes, students sampled water and soil in their own kitchens, yards or neighborhoods. In other classes, students took photos or made sketches wherever they were living and added these to a common Box folder or Slack channel to share with each other. The instructor for the Biology of Fishes, where students were spread across the country, observed that everyone in the class enjoyed examining the regional data on fish communities that they could build by combining everyone’s individual data. Another faculty member observed that for many students, these excuses to be outdoors during the pandemic brought a “source of restoration and a calming during this moment.”
That said, it helped to have flexibility built into assignments to accommodate students’ varying locations and access to the out-of-doors. In a pollinator lab, students needed to adjust the methods around what flower(s) were available where they were. In Plant Biology, the online identification resources were richer for some student locations than others. Assignments also needed to accommodate students who were unable to safely go outside. In a biology project, a home-bound student focused on doing a statistical analysis of the group’s data instead of collecting it. An art class student substituted kitchen produce for living plants to illustrate features like branching and spirals.
Some faculty made (or asked staff to make) videos of specific habitats that students wouldn’t get to visit in person. Others used guest speakers to bring the wider world to the class environment.
[Image caption: A student heads out into the field for her Fishes Class. Photo credit: Sophia Margaritis. Image description: A young person with a mask covering her mouth and nose and a handful of orange flags stands in front of a lake. Everyone included in a picture gave permission for their image to be in this post.]
3. Create Collaborative Teaching Teams
Spring faculty invited summer faculty to meet with them weekly. This allowed spring faculty to share what was working or not as summer faculty were planning their courses. It also gave spring faculty a venue for sharing their successes, frustrations and questions.
4. Set Clear Expectations for Online Communication (C, E)
Faculty recommended
- surveying students in advance to see how many can attend synchronous sessions;
- surveying students in advance about wifi/connectivity;
- being explicit about what expectations are for course participation: is it okay to turn off cameras? to miss a discussion if you are feeling “Zoomed out?”;
- having a discussion with students in the beginning of the course to create ground rules (e.g. is Zoom Chat for Q&A only or for sidebar conversations? Who decides who speaks next?).
5. Keep Student Autonomy in Mind / Use Specific and Clear definitions of concepts (F, S)
In a traditional field course, the instructor or GSI typically guides students through field work. In the virtual setting, students have more control over when and how they conduct their field work. Faculty perceived that students were empowered by this freedom; however, if students didn’t understand exactly what they were supposed to be doing, they might make mistakes that were hard to identify or correct after the field work was complete. For example, plant and fish identification often rely on looking at a specific part of the organism, but students might mis-identify because they were looking at the wrong structures.
Several instructors noted that students collected less data on their own (and generally the data collected by the class spanned a wider geographic area) than they would have at UMBS. So while students were still able to participate in field work and the research process, their data required different analyses and conclusions than in a typical lab/project.
Additionally, spring term instructors noted that if given the choice, students worked in individual and small group (2-3 students) projects, instead of forming the larger groups that are the norm in field courses. Rather than helping the usual 5 or 6 groups with their research ideas, instructors were working with closer to 10-15 group/individual projects. This required the instructor to spend much more time giving help and direction to different projects.
6. Schedule Time and use different platforms to Build Community (C, E, F, S)
Some activities that let students and instructors get to know each other better included
- informal lunch gatherings where faculty ate their lunch with any students who wanted to come; sometimes faculty discussed things like their own career path or invited a colleague to talk about race or gender in the field;
- scavenger hunt where students had to find something that told the class something about themselves, such a book they’re reading or game the’re playing or their favorite thing in nature;
- on-line Adventure Race where teams of students worked together to solve clues that introduced them to Northern Michigan field sites;
- faculty v. GSI head-to-head online challenge (e.g. pipetting) with students picking sides in advance and watching a live competition;
- using side channels like discussion boards or chat channels as venues for ongoing and wider-ranging topics between course sessions.
However, not all of these had high participation. It was the observation of some faculty that students didn’t want to be on Zoom any more than they had to. Platforms that allowed asynchronous interaction (chats, photo galleries) had more robust participation than extracurricular synchronous events.
Everyone used Canvas as the academic home for the course. But most faculty tried to approximate the more informal and immersive experience of field camp by engaging additional software:
- Slack for fun field photos, chats.
- Zoom for informal activities like a virtual campfire, a scavenger hunt, and brown bag lunches where guest speakers shared their experiences as young scientists.
- Box for group collaboration and portfolios
[Image caption: The General Ecology class meets for a “virtual campfire” to just hang out and talk. Photo credit: Hannah DeHetre. Image description: A laptop screen view shows a Zoom call in progress. The dominant image is of a campfire with a lake in the background. Participants’ screen views are minimized along the side. Everyone included in a picture gave permission for their image to be in this post.]
7. Check-in and Revise as necessary (C, E)
Ask students early and often how things are going. Venues our faculty used for this included Google forms, one-on-one meetings, GSI-led video discussions, and text group chats (on Slack channels and Canvas discussion boards). Be prompt and flexible in responding to students’ concerns. One instructor developed a daily to-do list after receiving feedback that students wanted more clarity on daily course requirements. Another reduced the amount of weekly Zoom meetings when students complained of burnout and loss of focus. They reworked the class to allow more work to be done asynchronously and saw the quality of synchronous meetings improve. Other classes added late-night office hours (staffed by GSIs) in response to students’ requests for help at times when they were working.
8. Consider the Amount of Content (E, S)
Material takes longer to teach in a virtual setting compared to an in-person setting and students take more time to orient themselves when they are on their own without being directed by an instructor. In particular, any sort of experiment or guided learning takes longer and requires more time for explanation. Build in more time to explain assignments and go through expectations (and check in with students) than in a traditional semester. But don’t be surprised if students can have pretty thoughtful and thorough discussions. They are paying attention! One faculty described the coverage as “less material, more in depth.”
9. Be cautious when using analytical software programs (E, S)
Software was harder for students to use remotely. Many students struggled with R (a statistical program) and Excel, especially if this was their first time using them. In a remote setting, faculty can’t walk around a computer lab and peek over students’ shoulders. Especially in an asynchronous class, students can go a long way down an erroneous path without someone on hand to answer questions, catch errors, or ensure the software is doing what students think it is (e.g. one group ended up running a regression on text). If you’re using software, build in extra tutorials, open labs and office hours to address confusion. Faculty also found that students worked better with simpler and more straightforward data sets
BROADER CONSIDERATIONS
Additional topics came up repeatedly as we talked with faculty. We suspect you are hearing about these from other sources, so we won’t belabor them here. But they are worth being aware of. They get more to the heart of self-care, for students as well as instructors. Everything that’s true of students here is true of instructors whose non-academic lives are merging with work, too.
- Especially if students are attending classes from home or another off-campus location, the rest of “life” (e.g. family, employment, home and neighborhood concerns) is more in the foreground than when they live on campus.
- Mental health issues may be more common and/or more severe while also being harder to detect in remote formats.
- Students expect 24/7 responsiveness more than ever. Many instructors stressed the importance of clearly communicating and then sticking to the hours they were available. Some tried to replicate the camp feel by holding late night office hours (usually staffed by GSIs) or being broadly available during waking hours; others maintained office hours as they do in a regular semester.
- Even in a virtual environment, students could still learn a lot about the research process—how to interpret significant findings (or not finding significance) and when to use different kinds of statistical tests.
A final note from Alicia, Stephanie, and Meghan
While we did not specifically ask about how instructors considered accessibility and inclusivity in their courses, UMBS faculty discussed being flexible (e.g., giving parallel assignments depending on what environments were available near students), considering accessibility (e.g., working with students who did not have a good internet connection or working with students who could not go outside to do fieldwork because their country implemented a pandemic lockdown), and getting to know students (see “Schedule Time and use different platforms to Build Community” above). These are all practices that get recommended on lists for inclusive teaching. Accessibility and inclusivity are important topics that should be considered when designing all courses and the three of us wanted to make sure this was noted in this post. This resource has information on Access to Remote Instruction for Students and Faculty with Disabilities and this is a guide to inclusive teaching (aimed at UMich, but useful more broadly).
Footnotes:
*Stephanie is the Program Evaluator and Alicia is the Program Manager for UMBS’s Transforming Learning Program.
**The courses and instructors included in this analysis:
- Art in Nature, Cathy Barry (UMich)
- Biology and Ecology of Fishes, Amy Schrank (UMN)
- General Chemistry Lab, Levi Mielke (UIndy)
- General Ecology – 4 sections, Curt Blankespoor; Paul Moore (BGSU), Bob Pillsbury (UW-Oshkosh), Brain Scholtens (College of Charleston)
- Great Lakes Arts Cultures and Environments (GLACE) Program (AMCULT/NATIVEAM 311, ANTHRCUL 298, ENGLISH 221, ENGLISH 320) – Ingrid Diran (UMich), Kendall Babl, Jennifer Metzger (UMich), Daegan Miller, Margaret Noodin (UW-Milwaukee)
- Intro Biology Lab, Cindee Giffen (UMich)
- Plant Biodiversity in the Digital Age, Charles Davis (Harvard) and Susan Fawcett
***If someone other than the instructor is assembling and distributing the kit, they should send a kit to the instructor, too, so they know what materials students have to work with.
Thanks Stephanie and Alicia for an interesting post. I co-taught one field course this summer (plant ecology), and we had to come up with a plan on short notice “on the fly”, so it’s interesting to get broader perspectives based on multiple courses. The main changes were (i) instead of about 10 groups of 4-5 students each, mostly in one place near the university, we had 25 or so individuals or pairs of students in many different areas of Québec; (ii) instead of choosing among pre-defined project ideas, they came up with their own ideas based on local opportunities. This meant quite a lot more of our time consulting, helping students develop their projects, but overall I was quite pleased with the outcome. Some studied the plants in their lawns or gardens, some in urban parks, and others in forests or wetlands, sometimes comparing two distant regions where people happened to be. Everyone gained experience coming up with questions based on local observations, and I think (or hope at least) that they felt well supported in their endeavours. If we’re in the same boat next year, I’ll definitely return to your post for ideas…
Mark, that sounds very similar to what a lot of our faculty expressed, too: many more groups (or “groups” of one), far more time advising because of this, and projects focused on where students were. One thing we didn’t go into here, and I’d be curious to hear about from you, were any unexpected positives. For example, one student’s family went with her on a day when she was collecting fish. Her father began telling about HIS experiences fishing as a kid and it opened the door to a whole new perspective on her parents for the student. Another student had some babysitting duties for younger siblings and she took them out with her on a few assignments. She has photos of an insect (I forget what one) on a little sibling’s photo and said the sibs really enjoyed going out with her. I found it interesting that when students are embedded at home, there can be a lot of drawbacks or challenges, but also some beautiful moments that couldn’t have happened when they’re physically separated. And several people (Stephanie would have to say if it was students, faculty, or both) commented how it gave students more appreciation for their home place, wherever it was. They got to know it in a very different way than usual.
No one shared anecdotes like that with me, but I can well imagine it happened. A few projects were motivated by the goal of better understanding something relevant to their family’s property: e.g., whether their forest is likely to change in composition in the coming decades (comparing regeneration in the understory to canopy trees) or whether watering a lawn reduces heat-wave effects more in shade or the open (an actual experiment!). A positive for the long-term of the class is the shift to having students design their own projects, which has great learning benefits I think. We’ve had that in mind for a while but intertia just kept things as they were; shaking things up forced it and I’m pretty sure we’ll stick with that aspect even once back to normal.
Very cool. That’s the silver lining, I suppose/hope.
I found this post very interesting. I just finished teaching my grassland plant and soil ID course last week. Normally this course is 35 students 2 faculty, and 2 assistant instructors criss-crossing Saskatchewan on a bus. We made a number of decisions this year to make a semi-virtual course worthwhile
1. we limited enrollment to 12 (only students who needed the course to graduate were let in). With 4 staff this allowed a lot of time for one-on-one and small group check ins
2. we held one in person day (day 2 of 5) at a site on the edge of Saskatoon (close enough that the one student without a vehicle could get there by transit). We decided to do this because we felt we could not get good enough video resolution on soil pits and small plant parts to be able to effectively demonstrate the core stills.
3. For the remainder of the course some students (mostly rural kids) did exercises near their home farms. For the city kids we got permission to dig pits in a couple of locations, and students “dropped” in separately to do the exercises.
For me the big takeaway, was that a small amount of in-person teaching can go a long way. We felt we could maintain covid vigilance for one day with the students (we are teaching on the windswept open prairie after all). Student comments were universal that the remainder of their time working alone was far more effective after a short-in person exercise.
For us this worked because a) SK currently has very low Covid numbers, so the risk was small, and b) most of our students (and all of the rural students) have access to vehicles, so 300km of travel for a day in class is not a big deal.
Good luck to everyone with your fall courses.
Thanks for sharing. It’s so interesting to hear how each instructor is adapting their class(es) to student and local situations. Your point about a little bit of in-person instruction going a long way is one worth exploring. I think of this article, which comes to the same conclusion: Varty, A.K., and S.B. Johnson-Fulton. 2017. Why teach natural history through hybrid and
online courses? Journal of Natural History Education and Experience 11: 5-15.